Glucocorticoid-Induced Osteoporosis – A Disorder of Mesenchymal Stromal Cells?

نویسندگان

  • Rowan Hardy
  • Mark S. Cooper
چکیده

Glucocorticoids are a class of steroid hormones that are essential to life but cause serious harm in excess. The main clinical features of glucocorticoid excess are due to adverse effects on cells and tissues that arise from a common developmental precursor - the mesenchymal stromal cell (MSC; sometimes referred to as the mesenchymal stem cell). Interestingly glucocorticoids appear essential for the differentiation of cells and tissues that arise from MSCs. High levels of glucocorticoids are used in tissue engineering strategies to enhance the formation of tissues such as bone, cartilage, and muscle. This article discusses the paradox that glucocorticoids both enhance and impair MSC development and function. It will describe how endogenous glucocorticoids are likely to be important in these processes in vivo and will discuss the implications for therapies aimed at reducing the damage associated with the use of therapeutic glucocorticoids.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glucocorticoid receptor and Histone deacetylase 6 mediate the differential effect of dexamethasone during osteogenesis of mesenchymal stromal cells (MSCs)

Lineage commitment and differentiation of mesenchymal stromal cells (MSCs) into osteoblasts in vitro is enhanced by a potent synthetic form of glucocorticoid (GC), dexamethasone (Dex). Paradoxically, when used chronically in patients, GCs exert negative effects on bone, a phenomenon known as glucocorticoid-induced osteoporosis in clinical practice. The mechanism on how GC differentially affects...

متن کامل

Dicer ablation in osteoblasts by Runx2 driven cre-loxP recombination affects bone integrity, but not glucocorticoid-induced suppression of bone formation

Glucocorticoid-induced osteoporosis (GIO) is one of the major side effects of long-term glucocorticoid (GC) therapy mediated mainly via the suppression of bone formation and osteoblast differentiation independently of GC receptor (GR) dimerization. Since microRNAs play a critical role in osteoblast differentiation processes, we investigated the role of Dicer dependent microRNAs in the GC-induce...

متن کامل

Inflammatory regulation of glucocorticoid metabolism in mesenchymal stromal cells

OBJECTIVE Tissue glucocorticoid (GC) levels are regulated by the GC-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). This enzyme is expressed in cells and tissues arising from mesenchymal stromal cells. Proinflammatory cytokines dramatically increase expression of 11β-HSD1 in stromal cells, an effect that has been implicated in inflammatory arthritis, osteoporosis, obesity,...

متن کامل

Multiple Myeloma Bone Marrow Mesenchymal Stromal Cells Inhibit CD8+ T Cell Function in a Process that May Implicate Fibroblast Activation Protein α

Background: Multiple myeloma (MM) is a malignant plasma cell proliferative disorder with limited immunotherapy treatment because of T cell dysfunction. Objective: To investigate the immunomodulatory function of bone marrow mesenchymal stromal cells (MM-BMSCs) on CD8+ T cells. Methods: Proliferation and cytotoxicity were detected by c...

متن کامل

5-Androstene-3β,7β,17β-triol (β-AET) Slows Thermal Injury Induced Osteopenia in Mice: Relation to Aging and Osteoporosis

5-Androstene-3β,7β,17β-triol (β-AET), an active metabolite of dehydroepiandrosterone (DHEA), reversed glucocorticoid (GC)-induced suppression of IL-6, IL-8 and osteoprotegerin production by human osteoblast-like MG-63 cells and promoted osteoblast differentiation of human mesenchymal stem cells (MSCs). In a murine thermal injury model that includes glucocorticoid-induced osteopenia, β-AET signi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2011